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ABSTRACT This paper reviews the current state of the art in wearable sensors, including current challenges,
that can alleviate the loads on hospitals and medical centers. During the COVID-19 Pandemic in 2020,
healthcare systems were overwhelmed by people with mild to severe symptoms needing care. A careful study
of pandemics and their symptoms in the past 100 years reveals common traits that should be monitored for
managing the health and economic costs. Cheap, low power, and portable multi-modal-sensors that detect the
common symptoms can be stockpiled and ready for the next pandemic. These sensors include temperature
sensors for fever monitoring, pulse oximetry sensors for blood oxygen levels, impedance sensors for thoracic
impedance, and other state sensors that can be integrated into a single system and connected to a smartphone
or data center. Both research and commercial medically approved devices are reviewed with an emphasis
on the electronics required to realize the sensing. The performance characteristics, such as accuracy, power,
resolution, and size of each sensor modality are critically examined. A discussion of the characteristics,
research challenges, and features of an ideal integrated wearable system is also presented.

INDEX TERMS Bioimpedance, circuits and systems, COVID-19, influenza, pandemic, pulse oximetry,

sensors, temperature sensor, wearable devices.

I. INTRODUCTION
This year marked the start of a global pandemic that has
caused 22 million unemployment in the United States alone
and can cost the global economy up to 4.7 trillion dollars [1].
With a history as old as humanity, humankind has been
dealing with contagious diseases. The Plague of Justinian
(541-542 with 30-50 million fatalities), Bubonic plague
(1347-1351 with 200 million fatalities), Small Pox (1520 with
5 million fatalities), Great Plague (17"-18" century
with 16 million fatalities), Spanish flu (1918-1919 with
40-50 million fatalities) and HIV (1981-Present with
25-35 million fatalities) are among pandemics on record that
have changed the course of history [2]. Humankind has held
back these pandemics, and possibly our extinction, with the
hard work and collaboration of many great healthcare work-
ers, researchers, scientists, pathologists, and epidemiologists.
We faced a new challenge in 2020, a pandemic in the age
of technology. In the 21%" century, the overall quality of life
and life expectancy has increased considerably compared to
the early 20" century. One hundred years ago, the typical
newborn fatality rate in the first year of life was 26.9% and
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46.2% children born died before they reached adulthood [3].
In 1900 the typical life expectancy was 41 years, making the
effect of pandemic mortality rate less on people’s lives. With
the advancement of medicine, the modern scientific under-
standing of diseases, improved understanding of hygiene,
timely treatment, and diagnosis of disease, the average life
expectancy in the world has almost doubled [4], making the
2020 pandemic a world scale crisis.

We are still unsure of the human and economic recovery
process. The first step of recovery is knowing when the
pandemic is going to be over. Similar to many past pan-
demics, people are waiting for a vaccine to overturn the
situation. In the middle of the 20”* century, vaccines went
through a revolution that regenerated previous vaccines with
specific antigens, making them more efficacious, safer, and
less expensive. Growing viruses in laboratories led to the evo-
lution of the now common childhood vaccination schedules
for diseases such as poliomyelitis, measles, and whooping
cough. In recent years of vaccine research, scientists have
pursued new directions through innovative techniques using
recombinant DNA and novel loading techniques [5], [6].
Vaccine research has expanded its target to various diseases
such as hepatitis B, influenza, pneumococcus (which causes
pneumonia), meningococcus (which causes meningitis), and
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FIGURE 1. A timeline of the pandemics in the last 100 years. The death toll of each disease is represented by the area

of the circle.

septicemia. To go even further, researchers are targeting
non-infectious conditions such as addictions and allergies.

Currently, most vaccines are derived from our knowledge
of the immune response and host-pathogen interactions along
with mass production of antigens. However, the speed of
generating the vaccine has still remained lengthy, and it is
estimated as of spring 2020 that a COVID-19 vaccine can
take between 12-18 months to reach mass production [7].
Though making the vaccine is much faster and more reliable
than the 20™ century, raised standards on the number of trials
and human tests needed before a vaccine is mass-produced
keeps the timing slower or the same as vaccine production for
previous pandemics. Here are the facts to take away, similar
to previous pandemics, the vaccine will be able to help after
the disease has reached its peak.

Unlike vaccines, communication technology has changed
drastically since the pandemics in the early 207 century.
In 1920 the first radio channel was broadcast and in 1925,
the first television signals were broadcast [8]. Thus, people
have been more informed during a pandemic. Reading the
history of pandemics, one can notice that before such com-
munication, each community needed to identify a pandemic
on their own, leading to delay in diagnosis in many areas,
which caused more severe outcomes in terms of fatality
and infection rate. Moreover, the right approaches to control
the contagion and possible vaccine, cures, and information
regarding the disease also took a lot of time to reach each
community. Individuals were bearing the load of inventing
the wheel over and over again, often halted even more with the
misinformation that a letter or a short telegram would bear.
An example is the 1918 Spanish flu when these messages
were carried by postal workers and taught to the public by
postal workers, boy scouts, and teachers. One goal of this
campaign was to prevent people from using shared cups at
water fountains or to remove paper towels from restrooms.
Similar to the Covid-19 lockdowns in many countries, these
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volunteers were also used to provide food to highly impacted
communities [9].

Despite a few similarities, in our time, the abundance of
communication technologies has allowed us to stay in contact
with friends, family, and social media news hubs along with
older means of information (radio, television, newspaper).
We are bombarded with news every day, it is reported by
WHO that a surge of unconfirmed news can lead to losing the
public’s trust with severe effects on health, the economy, and
political terms [10]. However, the abundance of technological
devices available and the prevalence of wearable devices are
what separate the current era from the past. It is up to us to
put these technologies to good and efficient use.

This paper outlines the roles of portable wearable devices
in controlling pandemics and aims to discuss the advan-
tages and limitations of incorporating 21%-century technolo-
gies (wearable medical systems, mobile devices) in patient
monitoring. After the introduction, a brief history of pan-
demics along with their symptoms is presented in Section II.
Section III goes through the different technologies available
today for pandemics and what has been done to monitor
previous pandemics. Different sensors that can help detect
respiratory pandemics symptoms currently being researched
or available commercially are reviewed in Section IV.
In section V the feasibility and challenges of having portable
sensors for pandemics is discussed, and finally the conclusion
is given in section VI.

Il. UNDERSTANDING PANDEMICS AND THEIR
SYMPTOMS

To have a better understanding, we go through the pandemics
of the last 100 years. An illustration of the pandemics, a time-
line of their year, death toll, and mortality rate is shown
in Fig. 1. The 1918 influenza pandemic, Spanish flu, is still
one of the most severe in recent times. This virus had an
avian origin and was caused by an HIN1 virus. Though called
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the Spanish flu, researchers are still unsure of the birthplace
of the virus. France, China, Britain, and the United States
have all been suggested as a potential origin of the virus.
It is estimated that at the time, 500 million people (roughly
1/3 of the global population) were infected by this virus [11].
With around a 10% mortality rate, especially in young adults
(20-40 years) this virus is still one of the deadliest and most
devastating in our recent history. Having no vaccine and no
antibiotics to protect against secondary microbial infections
caused by the influenza were among the contributing param-
eters to fatality of this pandemic. Quarantine, limitation of
public gathering, and isolation of sick people were applied
by governments (however unevenly). However, lack of appro-
priate personal hygiene and effective disinfectants can be
associated with Spanish flu high mortality. After following
its natural curve, the virus disappeared with a rapid decline in
cases in late 1919 [11].

The next influenza pandemic initiated in China in Febru-
ary 1957, known as the Asian flu, killed at least 1 million
people worldwide. This influenza was caused by a strain of an
H2N?2 virus, which was a mixture of avian and human flu with
minimum immunity in the population. With the advancement
of medicine, a vaccine was available from October 1957 that
helped to control the pandemic. This virus circulated until
1958 and had an antigenic shift into a influenza A virus
subtype H3N2 that caused the next big epidemic in 1968 [12].

The Hong Kong flu, initiated in 1968, caused 1 million
fatalities globally with approximately 100,000 fatalities in
the United States alone. The disease was particularly deadly
to people 65 years old and older or people with pre-existing
conditions. The vaccine was made widely available after the
pandemic had already peaked for most populations. Medical
care was more advanced compared to the early 20” century
and an abundance of antibiotics could prevent fatality due to
secondary infections caused by the virus resulting in a fatality
ratio under 0.5% [13].

Though advancements in medicine, pathology, and virol-
ogy, we are immune to many diseases that cast challenges in
history. Contagious respiratory illnesses still remains a threat
to our well being in the modern world. In March 2003, a new
respiratory pneumonia was diagnosed with the first infected
humans located in China, and a global alert on severe acute
respiratory syndrome (SARS) was issued by the WHO.
SARS affected people in 30 countries, infecting more than
8000 people. With a considerable mortality rate of 4-10%,
774 died. With the virus effects developing deep in the lungs,
this made the mortality rate high. The same fact, however,
made the disease less contagious and easier to contain. The
economic impact worldwide was over US $30 billion [14].

In April 2009, a HIN1 virus emerged, with the first human
being diagnosed in Mexico. The origin of this disease remains
unclear since the mixture of influenza genes is not identified
by whole in avian, humans, or barn animals. This virus swept
the United States and the world with an estimated number
of infected people between 700 million to 1.4 billion people
from April 2009 to August 2010 [15]. This corresponds to
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11% to 21% of the world’s population at the time, more than
the number of cases estimated for Spanish flu. However, this
disease had a minor mortality rate of 0.01-0.03% of those
infected, resulting in about 150,000 to 575,000 fatalities.
Immunity of approximately 1/3 of adults older than 60 years
was an unusual feature of this pandemic [16].

The next pandemic was first identified in Saudi Arabia
in mid-2012. This disease called Middle East Respiratory
Syndrome Coronavirus (MERS-CoV) infected 26 coun-
tries in Asia, Europe, and Africa with more than 80% of
its cases in Saudi Arabia. The still ongoing pandemic does
not pass easily from person to person, most infections are
reported in people providing unprotected care to an infected
patient. With the case-fatality rate as high as 35%, a sig-
nificant number of laboratory-confirmed cases and deaths
have been reported. The median age of affected individuals is
56 years, ranging from 2-94 years, with symptoms appearing
about 5 or 6 days after a person is exposed, and ranging from
2 to 14 days [17].

The last pandemic before COVID-19 was Ebola. The
first case was identified in a small village in Guinea,
with an 18-month-old boy reported being infected by bats.
The disease is believed to have happened before in 1976.
The largest outbreak, however, occurred December 2013 to
January 2016, with 28,646 cases and 11,323 deaths [18].
Over the duration of the epidemic Ebola, with a high fatality
rate of 39.5%, spread to seven more countries. The vaccine
was not developed until December 2016. Since its approval,
the vaccine has been stockpiled and is believed to have
stopped another outbreak in 2018 [19]. The summary of key
findings regarding each pandemic is shown in Table 1.

Typical pandemics symptoms resemble with flu symp-
toms. In the first wave of the Spanish flu, sick individuals
experienced fatigue, chills, and fever. This was usually over-
come within a few days, and the death rate was relatively low.
In a second, and highly contagious wave, infected persons
developed symptoms such as turning blue and fluid filled
lungs, and died within days or hours. Initial flu-like symp-
toms of the illness were followed by appetite loss, stomach
issues, and a dry hacking cough. The leading cause of death
was pneumonia or other respiratory complications [20]. The
Asian flu symptoms presented similarly to other strains of
influenza and complications included heart failure, pneumo-
nia, and seizures potentially leading to death.

The Hong Kong Flu caused upper respiratory symptoms
along with muscle pain, weakness, chills, and fever with
pneumonia is the leading cause of death among high-risk
patients. SARS usually initiates with flu-like signs. After
about a week, dry cough and shortness of breath appear, and
ten days after a person is exposed to the virus, breathing
issues arise. The infection then affects the lungs and airways
(respiratory system), leading to an increasing lack of oxygen
in the blood, which can be fatal in the most severe cases.

HIN1 Influenza starts with typical influenza symptoms
with complications of worsening any chronic conditions,
such as heart disease, asthma, and pneumonia. Severe
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TABLE 1. Pandemics of the last 100 years.

Disease Year Death Toll Fatality Rate Age Range Symptom Duration | Symptom Onset Virus
Spanish Flu 1918-1920 50 million 2% 20-40 N.A. N.A. HINI1
Asian Flu 1957-1958 | 1.5-2 million 0.30% Immunity rare N.A. N.A. H2N2
< 65 years
Hong Kong Flu 1968-1969 1 million 0.50% Over 65 4-5 days 1-2 days H3N2
SARS 2002-2003 770 4-10% Immunity rare 14 days 10 days SARS-CoV
< 65 years
Swine Flu (HIN1) | 2009-2010 Over 18k 0.01-0.03% 25 years and 8 days 3-5 days Novel HIN1
older
MERS 2012-Now 850 35% 2-94 years 7-16 days 5-6 days MERS-CoV
Ebola 2014-2016 11.3k 39% 25-45 years 6-16 days 2-21 days Ebola Virus

pneumonia effects, particularly in the elderly, ranges from
confusion to seizures and respiratory failure. Most people
confirmed to have MERS-CoV infection also showed respi-
ratory impairment with fever, cough, and shortness of breath
followed by severe complications such as pneumonia and
kidney failure. Ebola symptoms typically start with a sud-
den flu-like disease with symptoms of fever, tiredness and
general weakness, reduced appetite, muscle and joint pain,
headaches, and sore throat. Infected patients then present
with nausea, vomiting, diarrhea, and abdominal pain. In addi-
tion, shortness of breath, chest pain swelling, headaches, and
confusion may also be present.

As for COVID-19, the symptoms match what is on record
for every other respiratory pandemic. There is an incubation
period of up to 14 days before developing symptoms. The
most common symptoms are persistent dry cough, fever, and
tiredness. Acute respiratory failure and pneumonia are among
the complication that can cause fatality among patients.
Though, as of today, an increasing fatality rate of 3.4%
has been reported by WHO, most people recover treatment
free [21]. However shortness of breath and low blood oxygen,
common among most COVID-19 patients, is an uncomfort-
able experience pushing patients to visit a hospital.

A summary of symptoms associated with pandemics is
illustrated in Table 2. Fever is the most common symptom
between all of the epidemics. Low blood oxygen occurs in
all of the pandemics but Ebola. As a third parameter, all of
the patients with complications had infection reaching their
lungs. These infections cause inflammation in the respiratory
tree. The outpouring of inflammatory fluids into the lungs
causes pneumonia. As fluid collects in the lungs, the amount
of oxygen carried to blood decreases. Insufficient oxygen in
the blood can cause the kidneys, lungs, liver, and other organs
to shut down and stop working [22]. A wearable sensing
system that can detect these three main symptoms (fever, low
blood oxygen, and fluid accumulation in lungs) can be used
to identify the progress of the disease.

lll. TECHNOLOGY FOR PANDEMICS

Technology plays a rapidly growing role in daily routines.
People are increasingly dependent on technology and less
willing to be separated from it. Technology’s tendency to
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TABLE 2. Symptoms of last 100 years of pandemics.

Disease Fever SpO2 Pain Fatality Cause
Spanish Yes Low Muscle Pneumonia
Flu*
Asian Flu* Yes Low Muscle Pneumonia
HongKong Yes Low Muscle Pneumonia
Flu*
SARS >38.0°C | <92% Muscle Pneumonia
HINI >37.7°C | <90% Muscle Pneumonia
MERS >38.0°C | <90% Chest Pneumonia
Kidney Failure
Ebola >38.3 °C No Muscle Bleeding
Abdominal Fluid Loss
COVID-19 >38.3°C | <90% Muscle Pneumonia

* No fever degree or blood oxygen (SpO2) on record since the disease
is for more than 50 years ago.

become faster and smaller has given rise to a new generation
of wearable technology, from fitness trackers and the smart
watch to smart glasses and smart contact lenses. The last
two decades have seen an unprecedented increase in wearable
technology usage, especially for healthcare applications [23].
The global wearable technology market was at US $750 mil-
lion in 2012 and is expected to increase to US $51.6 billion
by 2022 [24]. 60.5 million people used a wearable device in
the US in 2019 and this number is expected to go up 9.2% by
2021 [24].

COVID-19 has increased the global demand for in-home
monitoring and provider-patient engagement solutions.
Current WHO guidelines emphasize COVID-19 patient mon-
itoring based on temperature, breathing rate, and blood oxy-
gen content. Many companies and startups in the sensor
technology area are adapting existing technology to meet this
increased need. These companies deliver secure cloud-based
solutions to monitor COVID-19 symptoms. However, these
solutions proposed by companies developing wearable gad-
gets, only follow one or a couple of related symptoms.
As a note, all devices and solutions introduced in this article
approved by the US Food and Drug Administration (FDA).
The author extracted the FDA report for each device. If a
report was not found, news of the device being FDA approved
in a trustful technology news website was considered if the

VOLUME 8, 2020



A. Hedayatipour, N. Mcfarlane: Wearables for the Next Pandemic

IEEE Access

company had a running website and was responsive to quote
requests. Though sensors claiming to be an FDA-approved
product are being sold in well-known online shopping web-
sites like Amazon, only sensors with official FDA reports
are considered. Moreover, sensors included had to have some
means of data transfer to the cloud, cell phone, or a medical
data center. As the last condition, all included sensors can be
bought from the relevant company website.

Masimo’s solution [25] is a secure cloud-based patient
monitoring with wireless pulse oximetry for oxygen satu-
ration and respiration rate. An online data server, Masimo
SafetyNet Data Capture, monitors the results. The sensor is
single use. Patient data is securely transmitted via Bluetooth
to the Masimo SafetyNet mobile application. A predefined
CareProgram, based on a patient care plan, provides notifica-
tion and captures information from the wireless sensor. The
data is then sent securely to the hospital for evaluation. The
care program created by Masimo is in line with CDC and
WHO guidance for tracking potential COVID-19 patients.
Changes in official guidance or hospital protocol can be easily
reflected in updates to the program.

Vital Patch [26] is another wearable fabrication company
that has proposed a solution for COVID-19. Instead of admit-
ting all patients to the hospital, at home continuous moni-
toring at the patient’s home environment, using a wearable
patch that lasts up to 7 days, is instead used. Changes in
typical parameters such as temperature, pulse, oxygen levels,
and respiratory rate can initiate customizable alerts to bring
attention to any worsening of symptoms. A total of 11 vital
signs, including posture and fall detection are monitored. The
high price of the system with the tablet and data center move
this device further from commercial in-home use and in the
realm of medical/hospital use.

Oxitone [27] points out the unique challenge the novel
Coronavirus or COVID-19 infection imposes on us. Accord-
ing to their website, wearable real-time continuous digital
monitoring of vital health signs is valuable in the fight against
COVID-19. Symptoms in infected patients can range from
none to mild to severe. However, one of the most dangerous
symptoms is low oxygen levels in your blood without any
other symptoms. These low levels of oxygen can cause seri-
ous damage to different organs like the heart, brain, or kidney.
Using Oxitone, people with known or suspected exposure to
COVID-19 can know their blood oxygen, temperature, and
other vital parameters monitored from home. Oxitone can
also monitor stress levels and sleep cycles during current
circumstances when people are more prone to anxiety or
depression.

Oxitone offers wearable technologies that fit COVID-19
home monitoring needs. Unlike many consumer-grade
devices, these wearable solutions enable hospital-grade con-
tinuous measurements of the pulse oximetry data, heart rate,
activity, stress level, sleep and stress pattern, skin temper-
ature, and other parameters - all in one device. However,
the system lacks respiratory rate detection. It was announced
by the company that respiratory rate detection will be added to
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this sensor in the subsequent stages, along with fall detection.
All the data is utilized to generate a unique personalized
digital health signature. The system provides a physicians’
web portal with a secured cloud infrastructure for remote
monitoring of captured data. Oxitone 1000M is FDA-cleared
and the wrist is used instead of finger tip to have a larger
surface area for a less bulky sensor implementation. The
flexible sensor measures either backscattered or transmitted
light, with the typical measurement site being the top of the
wrist ulnar bone.

All devices introduced are hybrids between medical and
commercial devices. Some of these hybrids need a system
to be set up by a hospital and consist of measuring devices,
data storage units (or data centers managed by the company),
and tablets (or any other display unit). These points, along
with maintenance, training, and handling fees, make these
systems’ prices higher than others and not affordable for
the general public. Apart from the price range, these com-
parable to the benchtop medical devices are not, in some
cases, a muti-modal sensing device. Having the ability to
measure temperature, oxygen level, movement tracking, heart
rate, fall detection, and even impedance sensing on a single
device is far from commercial implementation and still rare in
research. For instance, a multi-modal sensor implemented by
Shimmer [28], integrates ECG, respiration, inertial and GPS
sensors on a single device. Researchers at the University of
South Florida are using this sensor to monitor those who have
already tested positive for Covid-19 [29]. In this research,
skin temperature, and oxygen saturation are the main symp-
toms being monitored by a wearable device mounted on the
chest. Using artificial intelligence and machine learning on
the data collected, patterns that could lead to a better under-
standing of patient outcomes are extracted. A good example
of widely available commercial sensor is the glucometer,
a minimally invasive device, now available with the price of
less than $10 USD all over the world [30]. A summary of the
commercial devices introduced in this section and section III
is shown in Table 3.

IV. SENSORS
Continuous monitoring of patients in recent years has
involved ECG sensor leads connected with wires onto the
patient’s body, a nasal cannula, an SpO; clip, and other wired
sensors attached to a display close to the bed. These wired
sensors, while displaying real-time data, can only be accessed
while in the patient’s room. Furthermore, The patient is deal-
ing with the stresses of illness, they are immobile, confined
to the hospital bed, and experience a sense of incapacitation.
This can cause discomfort and other negative physiological
consequences such as deconditioning of the cardiovascu-
lar system caused by decreased stroke volume and cardiac
output [31].

The integration of wireless with sensors and transduc-
ers into wearable systems is becoming more common due
to progress in micro and nano-fabrication technologies.
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TABLE 3. Commercial wearables for body temperature and blood oxygen.

Name Category Other Measurement Connection to Body | FDA Cleared | Reusable | Price*
TempTraq Body Temperature - Patch Yes No $20
Fever Scout Body Temperature - Patch Yes Yes $45
Oura Ring Body Temperature Heart Rate, Steps Ring Yes Yes $299
FeverWatch** Blood Oxygen, Body Temp Blood Pressure, Heart Rate Wrist Worn No Yes $50
Garmin Blood Oxygen Activity Tracker ,ECG Wrist Worn No Yes $100
Vivosmart**
FitBit (Charge, Blood Oxygen Activity Tracker ,ECG Wrist worn Yes Yes $120
Tonic, Versa)
iHealth Blood Oxygen - Finger Clip Yes No $49
Masimo Blood Oxygen - Finger Clip Yes No $299
MightySat
VitalPatch Body Temperature Activity Tracker, ECG, Heart Patch Yes No ook
Rate, Respiratory Rate, Body
Posture, Fall Detection
Oxitone Blood Oxygen Stress Levels, Sleep Cycles Wrist Worn Yes Yes D

* An average of price based on prices available on internet at time of writing was considered.
** Although only US FDA approved devices are included, Fever Watch and Garmin watch are included due to similarity to FDA cleared rivals.
*#* These devices are available for medical professionals to use, and the price is estimated to be more than $400 considering the needed platform.

Here, sensors with applications in detecting symptoms of
COVID-19 are reviewed.

A. PULSE OXIMETERS

One of the most significant biological processes in the human
body is transporting oxygen by hemoglobin through the cir-
culatory system. The percentage of hemoglobin saturated
with oxygen (Sp0>) is a critical parameter to be measured in
patients since lack of oxygen can lead to brain damage, heart
failure, and death if it falls below 95% oxygen saturation [32].
Pulse oximetry (used to obtain a photoplethysmogram or
PPG) quantifies blood oxygen saturation levels based on the
light absorption characteristics of oxygenated and deoxy-
genated hemoglobin. The principles of pulse oximetry have
been known since 1935, when Karl Matthes (German physi-
cian 1905-1962) developed the first 2-wavelength earlobe
oxygen saturation meter using red and green filters. However,
widespread clinical use was not until the early 1980s [33].

In pulse oximetry, red and infrared light from light emit-
ting diodes (LEDs), pass through the probing site and the
detected light is measured (Fig. 2). Typical measuring sites
are the finger, the toes, and the lobe of the ear. Most sensors,
however, are located at the finger tip. In pulse oximetry, heart
contractions increase the blood flow at the measuring site,
leading to increased light absorption. The received waveform
at the photodetector contains peaks representing the heart
rate.

The infrared light is absorbed by oxygenated hemoglobin.
Oxygenated hemoglobin allows more red light to be
transmitted through it while Deoxygenated haemoglobin is
relatively transparent to infrared light and absorbs red light.
The difference in absorption of the two hemoglobin states
results in good sensitivity. The detected signal provides
information on what proportion of the hemoglobin in the
blood is deoxygenated dark red hemoglobin versus bright red
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FIGURE 2. A pulse oximeter emits infrared signal and measures the
unabsorbed light.

oxygenated hemoglobin. The PPG signal consists of an AC
component, which is the desired signal and DC component
that represents the constant absorption of non-pulsatile tissue
within the light path [34], [35]. The AC signal consists of
variable light absorption due to pulsating volume of arterial
blood.

The DC components are sources of noise and are filtered
using high-pass and low-pass filters. The DC component con-
sists of constant light absorption due to non-pulsatile arterial
blood, blood in veins and tissue, and bone. The small AC
component of the PPG signal is amplified for readout [36].
The advantages of pulse oximeters (PO) are continuous moni-
toring, accuracy, non-invasiveness, potential cost savings and
less stress on the patient [37].

1) COMMERCIAL PULSE OXIMETERS

In the last couple of years, applications that use mobile
phones to measure blood oxygen have been published,
Ox, Pox, and iOx for iPhone are among the most promi-
nent. These applications use the device’s built in cam-
era to detect SpO,. These mobile applications does not
use any extra sensors and are convenient in this sense.
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Limited research has been carried out to validate SpO>
obtained from phone applications using healthy volunteers
[38], [39] or patients admitted with low blood oxygen in the
emergency room [40], with controlled data collected from
electronic medical-grade SpO, measurement systems. Most
phone applications showed moderate agreement with hospi-
tal/medical grade pulse oximeters. However, these applica-
tions are not accurate enough to recommend to patients or
health providers, even as a personal device. The results in [39]
showed that in 20% percent of the cases the results were
falsely abnormal for healthy children. Reduced blood oxygen
can be a critical symptom and inaccurate results, especially
reporting the levels as too high, can cause medical profes-
sionals to misdiagnose and under or over treat the patient.

MightySat is the $299 Masims commercial pulse oxime-
ter [25]. Apart from the clinical use, the device is also
advertised for in-home use. In addition to the respiration
rate, it measures oxygen saturation, pulse rate, perfusion
index, and Masimo’s Pleth Variability Index (PVi) [25].
Masimo’s measure-through motion capabilities provide accu-
rate and continuous data in challenging patient conditions.
The MightySat weighs about 100 grams and is powered
through 2 AAA batteries (included in the weight). The device
is capable of doing 1,800 measurements before it needs the
battery changed. It also facilitates monitoring and sharing of
measurements via Bluetooth.

Another FDA approved pulse oximetery device, much
cheaper than the former device is presented by Ihealth [41].
The PO3M is a non-invasive wearable device that can detect
the oxygen saturation of arterial hemoglobin (SpO;) and
pulse rate. This wearable fingertip device is indicated for
adult patients in home and hospital environments (based on
the FDA document). It detects the effects of activity on oxy-
gen levels and pulse pre- and post-workout (based on their
website). The device uses 3.7 V Li-ion, 300 mAh battery, and
weighs 180 grams. It has Bluetooth connectivity to transmit
measured data to the device.

2) PULSE OXIMETERS IN RESEARCH

A photoplethysmographic sensor is capable of monitoring
critical vital signs such as heart rate (HR) and blood oxy-
gen saturation (Sp0O,). With pulse oximeters usually being a
module in a system that measures multiple physiological sig-
nals, power consumption is the primary constraint. In 2013,
the first fully-integrated pulse oximeter was designed by Kon-
stantinos N. Glaros [42]. Adequate signal to noise ratio (SNR)
to detect changes in SpO; levels and low power consumption
are some of the advantages of this new design. In his design,
Glaros used a switched-integrator as a noise-limiter, and a
high-pass filter plus a switched large bias current to lower
the transimpedance amplifier’s thermal noise [42].

Even in on-chip pulse oximeters, two LEDs are flashed
alternatively, dominating the system’s power requirement.
To reduce power consumption, chopping, reduced duty
cycles, and high switching frequency are frequently used.
However, the signal to noise ratio, and thus the accuracy

VOLUME 8, 2020

of the sensor, is reduced by smaller duty cycles. Trying to
control the duty cycle of the LED, turning off modules of
the sensor, and sampling the signal where the useful infor-
mation lies (near the peaks) have been among the methods to
reduce the power consumption [43], [44]. In [45], all system
components work synchronously on the applied duty-cycling
using a non-uniform pulse stream. This method reduces the
diode driver’s power up to 30x while retaining most of the
information. However, this design realized the needed filters
with large resistors, contributing to additional circuits and
increased power consumption.

In [46], the low-pass filter is removed and DC level
detection and calibration is implemented using a current
mode digital to analog converter (DAC). However, the slow
frequency of updating the measured DC resulted in signal
errors from motion artifacts and ambient light interference.
Reference [47] achieves one of the best power dissipation
figures using aggressive duty cycling and input signal-aware
adaptive sampling. However, the advantage of minimum
input-referred noise is offset by increased high pass frequency
and severely reduced gain. In [48], power and area is reduced
by weakening the requirement for the sensor’s dynamic
range. It is accomplished without a DAC, simplifying the
design. To estimate the performance quality of the design,
heart rate and SpO, algorithms are calibrated. To maintain
a good SNR and reduce the LED power significantly, [49]
uses a high sensitivity photodetector with ultra-low noise and
low power readout system. Quasi floating gate technology,
inverter cascode techniques, and pseudo resistors implement
the filters used in [50] to achieve low-power and high sensitiv-
ity. This design has not yet been fabricated, however floating
gate designs are one of the promising areas that improve pulse
oximeters. In [51], automatic gain control is used to reduce
the power consumption. When the photocurrent is very large,
the gain control halves the gain of the amplifying blocks. This
mitigates distortion of the PPG signal. The design also uses
a background light cancellation loop to reject the input DC
photocurrent, reducing the noise.

Table 4 compares the power consumption of the mentioned
pulse oximeters and indicate the systems targeting lower
power consumption. The power consumption of the system,
without the current needed for driving an LED, is still in the
range of few ten micro-watts, making this module one of the
most power-consuming modules in a system of sensors. New
research goes as low as 4.6 uW, including the ADC for an
accurate pulse oximeter [49].

B. TEMPERATURE SENSORS

Measuring body temperature in clinical practice is immensely
valuable for diagnostics. While in most cases, just the pres-
ence or absence of fever is really significant, continuously
measuring temperature can offer us unprecedented insights
into the cause and nature of a fever and help provide better and
more responsive care. An overview of a wearable temperature
sensor is shown in Fig. 3. Generally, the fever measuring
system has a voltage, clock, or frequency that changes in a
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TABLE 4. Blood oxygen saturation devices implemented using CMOS in research.

[42] [44] [45] [46] [47] [43] [49] [51]
Technology (um) 0.35 0.18 0.18 0.18 0.13 0.18 0.18 0.35
Supply Voltage (V) 33 1.8 1.2 3.3/1.8 1.5 2.5 3.3/1.8 2-3.7
Oximeter Type Transmission | Transmission | Reflective | Reflective | Reflective | Reflective | Reflective Reflective
Sampling Frequency (Hz) 100 165 4 0.5,1,2,4 100 100 40 Continuous
LED Bias Current (mA) 7.1 25.6 0.036 0.0033 50 50 9.43 3mW
Size (mm?) 1.265 1.84 10 8.45 10¢ 2.25¢ 20 0.64
Power Dissipation (uW) ¢ 363 216° 1710 99¢ 68.7° 180 4.6° 14.85
LED Duty Cycle (%) 4 0.7 0.0125 N/A 20 25 0.07 Continuous

@ LED Power is excluded.
b ADC power is included.
< Estimated value.

Subdermal Skin

Clock, Frequency, or Voltage
i 1 changing with temperature

Readout System

Skin Temperature
Sensing Electrode

FIGURE 3. Skin patch temperature sensing system.

predictable manner with the temperature. This change should
be compared with a reference signal to extract the variation.
This variation caused by the difference of the fever tempera-
ture from the normal temperature is then translated to digital
data, frequency or other means to be transmitted.

Recording trends in body temperature over time allows
us to understand the intensity and progression of a fever
reliably. This data can also enable a physician to precisely
follow the fever’s onset and prognosis. Fever has been the
common element that has been repeated in every pandemic.
In COVID-19 fever is very common making temperature
sensors a critical component of a wearable sensing system.

1) COMMERCIAL TEMPERATURE SENSING SYSTEMS
Since temperature sensing is very common in infants, there
are plenty of commercial temperature sensing systems avail-
able, however, here we have only considered the devices that
can be used for adults as well as infants and had a means of
reading the data in a portable manner (e.g. sending the data
to mobile phone application). TempTraq [52] is a single-use
device that is a soft, comfortable patch that continuously
monitors body temperature for up to 48 hours. The patch
sends the reading as well as alerts to compatible mobile
devices via Bluetooth. TempTraq is purposed to monitor the
patient’s temperature without disturbing them.

Fever scout by VivaLNK [53] is a multi-use wearable
thermometer patch that is worn under the arm, where it
continuously monitors body temperature. The measured
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temperature can be sent up to 100 feet away to a smartphone
through the accompanying app and the patch is 41 mm by
61 mm. This patch is purposed for post-operation fever, flu
infections, child fevers, and drug effects. The device is water
resistant and can last for 1 week on a battery charge. The
chance of cross-infection increases as caregivers typically
have to record a patient’s temperature at prescribed intervals
throughout the day. Since many people can be asymptomatic,
it is possible for caregivers to be carriers further transmitting
the disease. VivaLNK updated their system for the current
pandemic and has developed a continuous monitoring and
alert solution to automate continuous fever tracking. Using
trends and thresholding, caregivers have access to patient’s
temperatures through IoT enabled medical wearable temper-
ature sensors connected to a central monitoring system. The
medical staff can then identify the patient and can respond
accordingly.

Another interesting commercial device that includes a tem-
perature sensor is the Oura ring. The device is worn around
the finger and performs body measurements such as heart
rate, temperature, and step counts [54]. This ring can last up
to 7 days per charge, is water resistant and weighs only 7 g.
The ring shows the detected data on a mobile application,
communicating by wireless signals.

2) TEMPERATURE SENSING SYSTEMS IN RESEARCH

There are various low power temperature sensors presented
in recent literature. Many well-known designs use bipolar
junction transistors (BJTs) where the emitter to base voltage
has a linear decline with an increase in temperature. BJTs
are typically not used as temperature sensors for miniaturized
systems due to the power consumption being, typically, in the
W range. Proportional to absolute temperature (PTAT) volt-
ages can be generated from two BJTs. However, these sensors
need a high accuracy ADC to achieve accurate tempera-
ture sensing [55]. In [56], a ¥ A modulator is used as an
ADC because of its high resolution at lower frequencies.
Different topologies of ¥ A modulators have been consid-
ered in temperature sensors. The requirement for operational
transconductance amplifiers (OTAs) in X A modulators make
them bulky and power-hungry. Many designs try to relax the
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TABLE 5. Temperature sensor comparison.

Reference | Operating Voltage (V') | Accuracy (°C) | Power (nW) | Resolution (°C) | Area (mm?) | CMOS Technology (um)
[60] 2.1 +1 110 0.035 0.084 0.35
[69] 0.85 +0.4 600 0.063 0.085 0.16
[62] 1 +1.5 71 0.3 0.09 0.18
[63] - -0.84/4+0.34 305 0.294 0.002 0.18
[64] 1 +0.8 119 0.21 0.0416 0.18
[65] 1 +1.5 350 0.3 0.14 0.18
[66] 1 +0.8 405 0.3 0.0324 0.18
[73]* 0.6 0.47 117 - 0.96 0.18
[67] 1.1 2 150 - 0.0014 0.13
[56]* 1 +0.25 27800 0.18 0.0033 0.065
[70] 0.8 -0.9/1.2 11 - 0.074 0.18
[75]* 0.8 -4.2/+3.82 144 2.14 0.0016 0.029
[74] 0.5 +0.2 290 0.2 0.02 0.18
[76] 0.5 + 0.15 195 0.2 0.008 0.13

* Sensors marked with asterisks are not fabricated, simulation results are included.

bias issue of XA modulators by utilizing self-biased OTAs.
However, even with this, the power consumption can be a few
orders of magnitude higher than the typical sub-uW target.

In order to compensate for CMOS’s process variation,
accurate ADC’s will typically have large power consumption
and large area. The majority of sensors designed using this
method showed better than 1°C accuracy and a 5-100 uW
of power [57]-[59]. Reference clocks along with frequency
circuits that are dependent on temperature have also been
used as temperature sensors. These have the advantage
of less power consumption but give up resolution and
accuracy [60]-[63].

Most of these designs use an external clock, which
may not be convenient for portable devices. Other
designs [64]-[66] demonstrate clock-less temperature sen-
sors and convert the measured temperature to a delay or pulse
width with the advantage of low power consumption. In [67]
a current that is dependent on temperature is generated. This
output current, ideally proportional to temperature, then uses
a current controlled oscillator to translate the temperature
dependent current value into a frequency. The oscillation
frequency is proportional to the PTAT current. Any nonlinear
error can be mitigated through calibration (eg. two point
calibration). However, having a good calibration system
can increase the accuracy at the cost of area and power
consumption.

Weak inversion MOS devices, instead of BJTs, can enable
ultra-low-power operation in the 10’s to 100’s of nW. Designs
such as [68], set the goal of having a temperature sensor
with power consumption of sub ©'W, with power consumption
of 220 nW at room temperature with continuous operation.
The work in [69] uses dynamic threshold voltage MOSFET
transistors and achieves 600 nW for the power consumption.
However, having any MOSFET that uses specialized steps in
the fabrication process increase chip costs. By modifying the
voltage-to-current conversion module and the current mirror
structures, 71 nW was achieved by [62]. Using serially con-
nected sub-threshold MOS transistors a power consumption
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of 119 nW was achieved by [64]. Biasing two MOSFETSs
in weak inversion at different Vpg’s and using the ratio of
the currents [70] a linear approximation of the exponential
function was realized with only 11 nW power consumption.

In applications that have a limited temperature range and
small variations (e.g. dynamic memory, implantable devices),
accurate measurements for every temperature are not nec-
essary. In [71], a folded temperature sensor was proposed,
where accurate measurement was done by moving to a
different range. This segmented temperature sensing leads
to a reduction in supply voltage. The sensitivity and limit
of each section can be changed, by an alignment of these
segments. Table 5 shows the many temperature sensors,
designed in research that can be used in wearable systems.
Conversion to frequency or the digital domain can offer
advantages such as improved compactness and power con-
sumption [60], [64], [66], [72]-[74]. Having a BJT-less tem-
perature to frequency/digital structure can take advantage of
having a low power design, by use of sub-threshold MOSFET
transistors and removing the need for external clocks and
power-consuming ADCs.

C. IMPEDANCE SENSORS

Many different biomedical applications have been
implemented using electrical impedance measurement of
biological tissues. This measurement relies on the modula-
tion of the electric field between two conductive electrodes.
The physical shape and location, presence and absence, and
density of a tissue (or cells, substances, chemical particles,
and elements) between these two electrodes will result in
a variation of the applied electric field. This modulation of
the field based on the tissue between the electrodes changes
the measured current compared to when there is no tissue
between the electrodes. This method is shown in Fig. 4.
Using a small AC source that is not noticeable by humans,
this process is classified as a non-invasive procedure and
is considered a promising clinical monitoring technology.
Impedance measurement is also cheap and straightforward
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FIGURE 4. Trans-thoracic impedance sensing method for measurement of
fluid buildup in lungs.

to implement, making it an interesting solution for remote
monitoring of physiological parameters in wearable systems.
Bio-impedance measurements have applications in body
composition measurement in sports, firefighting, military,
medicine, respiration analysis, and blood flow [77], [78].
As an example, hemorrhagic shock and hypotension caused
by blood circulation in the brain is a significant cause of
death [79]. Management of obesity and monitoring fluid
changes while physically active is among other applications
of bio-impedance sensing [80], [81]. However, for pandemic
resolution, the devices would be used for cardiac monitoring
and pneumonia detection [82]-[85].

Fluid build-up is an early sign of heart failure. The range
of fluid levels and fluid pressures are small. The fluid moves
from capillaries into the interstitial space, then returns to the
circulation by the lymphatic vessels. The balance between
hydrostatic and the osmotic pressure in the blood results in the
overflow from the capillaries. Particle concentration in inter-
stitial end of the plasma reduces while there is an increase
in the overflow from the capillaries. To balance the outflow,
fluids build up in the tissue while sensing any differences
outflow between the hydrostatic pressure and osmotic pres-
sure. The fluid causes swelling in the tissue and reduces the
tissue functionality. If the build-up occurs in the lungs, then
it results in breathlessness [86]. Other parameters, such as
an increase in pulmonary circulation, will affect the outflow
of fluid from the capillaries. With an increase in interstitial
fluids, the lungs become more inflexible and heavier, which
also leads to breathlessness. Systematic circulation controls
the amounts of fluids that can be buffered in the tissues [86].
In COVID-19 the lungs are ground zero of disease, therefore
monitoring the lungs and the fluid accumulation in the lungs
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can be a critical part of a respiratory pandemic detection and
resolution.

1) COMMERCIAL THORACIC IMPEDANCE MEASUREMENT
To the author’s knowledge, there have been no commer-
cial FDA approved impedance sensors for trans-thoracic
impedance measurements. In 2009 the FDA cleared a wire-
less, non-invasive cardiac monitor system developed by
Corventis Inc. [87]. The sensor collected patient data and
transmitted it to a secure website where clinicians could
potentially act on the data. The device was, however, later
modified to be used for implantable cardiac monitoring.

2) THORACIC IMPEDANCE MEASUREMENT IN RESEARCH

A review of sensors with applications only in thoracic
impedance measurement is presented in this section. Having
an implantable impedance measurement device is the pri-
mary clinical method to measure thoracic impedance. How-
ever, having invasive implantable devices is not applicable
when there is a surge of influenza patients. There is thus
much ongoing effort into developing trans-thoracic electri-
cal impedance measurement systems that are wearable and
portable. In these wearable devices, patches and textile can
be used for the electrodes. In [83], a low-power, low cost,
wearable, high resolution cardiac healthcare system used
a patch sensor to monitor thoracic impedance and ECG.
This adhesive poultice-like plaster has 25 silver ink based
electrodes and was fabricated as a 15 cm x 15 cm 4-layer
patch. The impedance in series with the current injection
leads is increased due to the dry interface between the skin
and the electrode in patch and textile electrodes. In [84]
the electrodes for thoracic impedance are an integral part of
a T-shirt. Textile material, that is also stretchy, with better
contact have also been used [85].

There are also micro-controller based portable or even
wearable systems to detect thoracic impedance [88]-[92].
These microcontroller based devices are being replaced with
integrated systems to reduce the size, weight, and power of
the system.

There are many impedance measurement topologies avail-
able. Conversion to frequency [93], [94] and extracting the
real and imaginary part of the impedance with a lock-in
amplifier [95]-[97] are among the typical topologies. The
measurement principle of the first method is to obtain
a frequency proportional to impedance using a periodic
bi-directional current across the impedance. The signal char-
acteristics of potential are charged on the electrode, which is
then translated into frequency, enabling the readout system
to extract the tissue impedance between the two electrodes.
In the second method, the complex impedance is calculated
by using the in-phase and quadrature signals of the inter-
rogating signal. This method sweeps the frequencies of the
sinusoidal signal applied to the electrodes. The magnitude
and phase are obtained using low pass filters. An illustration
of portable systems for thoracic impedance measurement in
state of the art research is shown in Table 6. As is evident by
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TABLE 6. Comparison of thoracic impedance measurement systems.

Range (€2) Sensitivity (£2) Hardware Im- | Power (mW) | Size (mmxmm) | Weight (g) Data Transfer
plementation
[83] 10-10 k 0.1 180 nm 3.9 150150 N/A SRAM
[85] 10-20 3 Discrete 546 145 x40 30 Bluetooth
[89] 1-1k 0.1 Discrete 406 85x65 200 Bluetooth
[90] 10-40 0.01 Discrete 120 38x18 70 Serial
[91] 1-54 0.5 Discrete 14 48x30 N/A RF module
2.4GHz
nRF241L.01
[92] 1-54 0.5 Discrete N/A N/Z N/A RF module
2.4GHz
nRF24L01
[95] 1-1k 0.001 350 nm 100 N/A N/A N/A
[98] 1-10k 1 130 nm 3 45x%x25 12.3 RF module
433MHz
QAM-TX2

the table, there have been a few impedance measurement sys-
tems available that measure an impedance range of few 2 to a
few k<2 with errors smaller than an 2. These devices already
match the clinical-grade demands in terms of accuracy for
impedance measurement. With a small area in most of these
devices, the main problem remains to be power consumption.
The significant portion of the power consumed in the systems
is not the sensor itself, but the data transfer means utilized
to send the impedance such as the RF Modules and Blue-
tooth transmission. Using an on-chip means of data transfer
can therefore reduce the power consumption by orders of
magnitude.

V. DISCUSSION

Pandemics have been occurring throughout the history
of humankind. In the last 100 years, we advanced from
the literacy rate of 23% to 86% [99]. At the same time,
technology moved from the toggle light switch to artifi-
cial intelligence. Advancements in medicine have pushed
life expectancy from 46 years old in 1900 to 72 years
today [99]. The process of testing for diseases has come
a long way from symptom-based diagnosis to portable lab
tests with the ability to detect viruses in a few minutes.
For COVID-19, Cue Health Inc., a healthcare technology
company was awarded a $13 million (USD) contract to
develop a test for the COVID-19 causing virus [100]. Vaccine
production has changed tremendously in the era of genetic
engineering. However, because of the increased standards
and various regulations on their production, the process of
having a vaccine mass-produced still takes about
9-18 months. Generally, the process of controlling a pan-
demic has not changed significantly from past pandemics,
going back to the Spanish flu. The much-expected vaccine
will most likely be available after the disease’s peak has
passed, and apart from self-quarantining, there are not many
more guidelines. The traditional model-based approaches
and simulations, though extensively developed, cannot ade-
quately contain the real time nature of epidemics. These
methods may lack timely data and may provide inaccurate
predictions since it depends highly on assumptions on the
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behaviour of a new virus [101]. There is no doubt that modern
hospital equipment are science-fiction-like to people living
in 100 years ago. However, these state-of-the-art medical
equipment are still limited when there is a patient surge which
can block the access for other critical patients reaching timely
proper care [102].

To ease the surge of patients, other means of technolo-
gies should be utilized to monitor patients. Impressive sen-
sors are being developed in research labs at companies
and in academia. There have been various efforts to incor-
porate technology in the struggles of the modern world
with COVID-19. Giants of technology (Amazon, Facebook,
and Google) met to propose tools and collaboration pre-
venting misinformation [103]. Microsoft has stepped into
developing a chat-box to screen patients before they donate
plasma in-person to help with clinical research and treatment.
Apple and Google have committed to develop contact trac-
ing functionality based on bluetooth as part of the underly-
ing operating system. A more detailed tracking system was
implemented by China to keep the spread of COVID-19 in
check. The app, however, requires personal location tracking
and questions and was described as invasive and hard to
implement in any other country. In [104], data gathered from
200,000 Fitbit users was extracted to predict influenza-like-
disease epidemics at the state-level based on sleep cycles and
resting heartbeat. In this experiment researchers concluded
more sensors (temperature and respiratory measurement)
would be an improvement. changemarkerIn another study,
heart rate data from active tracker wearers (e.g., Fitbit, Apple
Watch, Garmin, Amazefit, OURA, Beddit) are detected to
provide early indication of influenza-like illnesses [105].

There are many other interesting sensors for preventing
or monitoring pandemic events. A smart ring is presented
in [106] that implements a discrete inexpensive method for
real-time monitoring of hand hygiene. In this ring, an elec-
trochemical fluid sensor detects when the hand makes with
water and indicates the required time for hand-washing using
an LED. The sensor is capable of identifying different types
of hand sanitizers (foam, liquid, alcohol based) and appoint
different hand washing times for the different sanitizers.
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In another research at Northeastern University [107], a flexi-
ble, soft sensor is worn at the base of throat (on the visible dip)
to quantify the intensity of the cough and potential patterns.
Despite these interesting achievements, sensors that monitor
vital signs are still the main tool to monitor a pandemic.

Though a wearable monitoring system for vital signs is
necessary to have in the event of a pandemic, a general
influenza patient monitoring system can save thousands of
lives every year. According to WHO [108], seasonal influenza
kills up to 650,000 people every year, with 70 to 85 %
in persons with pre-existing conditions that are older than
65 years. In the 2017-2018 season alone, 80,000 people died
of seasonal flu complications in the USA, with long term
nursing homes and senior care facilities being a hit both in the
seasonal flu and current COVID-19 pandemic [109]. In 2007,
[110] indicated that an influenza pandemic could be fatal
and out of control in long-term care facilities, and an epi-
demic can have severe consequences in these communities.
In 2020, indeed care facilities are among the challenges of
pandemic control. Apart from older adults, young children,
pregnant women, and those with chronic issues are at higher
risks of complications due to the flu. Having a wearable
system to monitor patients can save lives every year, reduce
unnecessary hospital admissions that can be inconvenient and
expensive for people who live in countries without a public
health system.

Over the last couple of years there has been some advance-
ments in studies involving wearable devices from companies.
Companies mostly consist of startups and small businesses
scattered around the world, with research areas that is far
from each other. The difference in the focus of wearable
devices, grants the advantage of providing different views on
a single problem. Different numbers of sensors integrated into
a single device from companies like Masimo, Vital Connect,
and Oxitone, show the feasibility of having a single device
with many sensing modalities and the necessity of having
a cloud data center for professionals to have easy, online
access to the data. These portable sensing systems are not
widely available in the current influenza pandemic. In the
world of commercial FDA cleared health monitoring wear-
able devices, which is a rapidly growing, there is no wearable
device capable of sensing common symptoms of influenza
that has affected respiratory system. The lack of such a system
is because of the many challenges in the design of a wearable
multi-sensor system. These challenges include powering the
devices, design of wearable electrodes, secure transmission
of data, and fabrication.

A. POWERING THE WEARABLES

As wearables go smaller in size and become more widely
adopted, one challenge for these devices is energizing them.
Circuits designed in newer technologies are in the nW realm
of power consumption, letting the whole system consisting
of several sensors to stay in uW realm. A 300 uW, 1.5V
sensor can work for up to 6 months with a simple 1000 mAh
coin cell battery that is 24.5 mm in width and 7.7 mm in
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height and weighs 10 gram. With on-chip Bluetooth systems
going toward uW [111], [112], a system can be implemented
on-chip using small CMOS technology and be powered up
with batteries, lasting days. However, conventional methods
of using batteries cannot provide the robust reliability and
flexibility needed in some wearable devices.

Batteries are too bulky for devices such as smart contact
lenses or patches, and the idea of charging them is not viable
for devices that need to worn for a long period of time (e.g.
heart rate monitoring systems). Thus, energy harvesting is a
potential means to eliminate the need for batteries in wear-
ables. Energy harvesting from ambient light, radio frequency,
thermoelectric, and human powered have all been tried and
their potential showcased [113]-[116]. From the 1980s, solar
power has been harvested and stored in photovoltaic (PV)
cells to power up calculators and wrist watches. These can
be implemented with a flexible design on the body [117],
[118] or under the skin [115], [119], [120] to provide 100 uW
to 100 mW per c¢m? based on the light intensity. Though
these devices have rather high power intensities, they are not
continuous since they depend on the environment.

Thermoelectric is another method that has been used since
the 1990s [121] and can provide 60uW per cm? if there is
a temperature delta of 5 °C to 10 °C from the surrounding
environment to the human body [122]-[124]. Another widely
available source of energy is RF waves, a seemingly ubiqui-
tous source due to the prevalence of difference frequencies
of wireless technologies. This method is widely available
making power harvesting easier. However the power density
is slightly less, 1 W per cm? for ambient source [125]-[127]
and 15 uW per cm? for external source [113], [128], [129],
showing the dependence of power to the distance from the
source.

In recent years harvesting energy from human bio-fluids
have attracted a lot of interest. The energy from food con-
sumption is converted into chemicals and kinetic energy, and
the idea is to use this energy to power up wearables [130].
Piezoelectric power harvesting from kinetic energy and glu-
cose/sweat fuels cells have the potential to provide power
densities in the range of 200 uW to 1 mW per cm? [116],
[131]-[133]. Though this method is most promising, power
density levels depend on the level of activity and differ from
person to person and still need improved fuel cells. In terms of
circuit design all mentioned approaches require a converter or
transducer device that converts energy to a power usable for
the sensor and a power management module to regulate and
monitor the power for the sensor. For energy sources that are
not constant, such as ambient light, heat, human movement,
and bio-fluids, another module needs to be added to store the
energy. This will contribute to the area and complexity of the
circuit.

B. ELECTRODE DESIGN

Another challenge is the electrodes design. Conventional
electrodes are silver/silver chloride (Ag/AgCl) adhesive but-
ton electrodes that need a conductive gel to ensure good
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conductivity. This gel inevitably leaves residues, making their
use uncomfortable. This conduction gel dries quickly and is
not suitable for long-term monitoring. With a dry interface,
the motion artifact affects the results immensely due to fric-
tion and slipping of the electrodes [134].

Stretchy textile materials for better quality contact have
also been implemented [84]. These may however prevent a
challenge in usability and comfort for older patients. The
design of [85] uses electrodes embedded in a shirt to measure
thoracic impedance. This electrode also is grouped into the
dry interfaces with considerable inaccuracy when motion
artifacts are taken into account. There is the possibility of
using slightly invasive—but painless—wearables in the near
future. These approaches include flexible stickers full of
micro-needle sensor arrays that can track chemical changes
just under the skin. An example application detects the pres-
ence of an enzyme using a bio-marker on the skin surface,
particularly within skin moles for the rapid screening of skin
melanoma [135]. Newer cheaper, robust electrodes that can
be worn for a long period of time (preferably days to weeks)
and work accurately despite the patient moving need to be
developed commercially to get a step closer to a wholesome
wearable patient monitoring system.

C. SECURITY AND ENCRYPTION

Another design criteria is the secure transmission and stor-
age of information. Home health monitoring is not new
[136]. However, the infrastructure needed to support these
connected devices is an active area of research with sig-
nificant challenges remaining. Groups such as the Personal
Connected Health Alliance and HIMSS indicate policies
that ensure ease of access, interoperability, and security of
data. In contrast, industry views security from a business
perspective. This has resulted in slow adoption of standards
and mechanisms for data sharing. However, it is clear that
wearables are one of the best tools for mitigating the effects of
future pandemics. A successful example is, [137], where for
controlling the mosquito borne Chikungunya virus, a health-
care system based on a wearable IoT sensor was proposed.
The system focused on the use of intelligent fog and cloud
computing to improve information acquisition and storage.
Fog computing is decentralized cloud computing, where stor-
age devices are implemented between the data source and the
cloud. However. this research is done without experimental
data from a wearable system, instead, basic vital symptoms
data is generated. Another example is the design and deploy-
ment of large-scale applications for body area networks based
on cloud computing platforms. Reference [138]. This archi-
tecture, however needs to be integrated with data analysis
tools to have a complete system. Therefore, having a data
center to store the data is another complication of a portable
wearable system that can be probed from various sides.

D. COST
A complete low-power, portable sensing system for patient
monitoring fever, SpO,, thoracic impedance mentioned,
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along with respiration rate exist in research. In terms of price,
chip production is a pricey process, with technologies going
smaller. Currently 65 nm or smaller technologies can cost up
to a few hundred thousand dollars [139]. Non-recurring engi-
neering (NRE) costs, such as teams, equipment resources, and
materials other than the ICs, can add up to a couple of million
dollars. However, IC’s produced in the range of a million parts
will divide the cost to the number of IC’s produced. The costs
of fabrication processes and NRE costs to build commercial
IC’s is therefore divided by millions. Commercial IC’s price,
produced in millions, doesn’t go higher than a few dollars.
Different sensors and actuators can be driven by
nano-technology advances [140]. These may be commonly
implemented using carbon or gold particles. In the case
of implementation with gold particles the price is more
expensive than CMOS fabrication with each gram of par-
ticles costing as high as $80,000 [141]. Newer methods of
implementation of nano-devices with carbon however have
a reduced price since the price can be as low as just $15 to
$35 for each gram [142]. Apart from the sensor fabrication
cost, electrode fabrication must also be taken in to account.
electrodes implemented in fabrics, textiles and patches are not
expensive [83]-[85], more accurate electrodes implemented
with nano-materials can add to the cost of the wearable
device. To have a system that can be mass-produced, and gear
that can be worn by thousands to millions of people the cost
of the entire system should not go higher than a few dollars.

E. THE IDEAL SYSTEM

An ideal system, shown in Fig. 5, consists of a temperature
sensor to detect fever, the basic symptom of influenza and
infections, pulse oximeter to measure the blood oxygen sat-
uration, and a trans-thoracic impedance measurement sensor
to detect the critical stage of influenza, inflammation in lung,
and pneumonia. Other sensors such as ECG, stress level,
and sleep cycle detection can also be added to this wearable
sensing system to detect more data. Besides sensors, smarter
wearable sensors can have a brain of their own processing
the data before transmitting them. Having on chip processors,
with controlling unit and memory, that does not consume
power in range of 10 uW to 100 W have attracted a lot of
interest recently [143]-[147].

All wearable sensors need a wireless mean of data trans-
fer to send the gathered data from the sensor securely.
Generally, off-chip RF or Bluetooth modules are the most
power-consuming blocks of any wearable/sensor system.
With more than a hundred times more power consumption
than W sensors, having a low-power wireless sensor fabri-
cated on-chip will eliminate the need for power-consuming
data transfer blocks. The data is transferred to a data center
or cloud to store the data and for the data to be analyzed
by the medical personnel and decide the right step for the
patient. The right step for the patient can be to stay home and
continue the remote monitoring, or to come to the hospital in
case the symptoms have gotten worse. This provides a more
comfortable environment for the patient to be monitored,
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FIGURE 5. An ideal system for patient monitoring with influenza like
symptoms.

mitigating the expensive cost of hospitalization, preventing
hospitals from overflowing with patients with mild symp-
toms, and potentially reducing patient stress.

VI. CONCLUSION

The pattern of a Coronavirus species or other viruses caus-
ing severe respiratory diseases with influenza like symp-
toms have occurred for centuries. In pandemics of the last
100 years, the virus itself may have been novel, but the
patterns have been repeating. This implies that there are going
to be other pandemics in our future. The symptoms of all
respiratory disease pandemics are fever, chest congestion,
trouble breathing, and muscle or joint pain and complications
occur when the blood oxygen saturation level falls leading
to lack of oxygen or when fluids accumulate in the lungs.
Commercial devices exist that can detect most of the symp-
toms and research has developed low power wearable sensors
and systems in all of these areas. With technologies moving
towards lower power and smaller devices, multi-sensor wear-
able devices that are capable of monitoring patients showing
epidemic disease symptoms, storing the data and enabling
access for medical personal are now feasible. Having the
sensors fabricated in large quantities reduces the price of
the sensor. However, there are still a number challenges to

184470

overcome before these sensors are approved for clinical use,
including improved electrodes and security issues along with
design tradeoffs in power, size, and accuracy.
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